\qquad
\qquad APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree (S,FE) Examination January 2022 (2015 Scheme)

Course Code: EC207

Course Name: LOGIC CIRCUIT DESIGN (EC, AE)
Max. Marks: 100
Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.
1 a) Convert the octal numbers 413.52 and 576.43 into binary, hexadecimal and decimal.
b) Given the binary numbers $\mathrm{a}=1010.1, \mathrm{~b}=101.01$ and $\mathrm{c}=1001.1$
$\begin{array}{lll}\text { Perform the binary operations } & \text { (i) } a+c & \text { (ii) } a-b\end{array}$
c) Hamming code was used to generate parity for a nibble. If received bit sequence is 1011001 , check whether any error is occurred with even parity. Find the correct bit sequence if there is any error.
2 a) Reduce the following functions using K-map

$$
\begin{equation*}
f(A, B, C, D)=\sum m(0,1,3,7,15)+\sum d(2,11,12) \tag{7}
\end{equation*}
$$

b) Implement the following function using an 8×1 MUX.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,2,3,7,9,10,12,14,15)$
3 a) Design BCD to 7 segment decoder and implement it.
b) Perform the conversions:
i) $\quad(10011010110101)_{\mathrm{BCD}}$ to Decimal
ii) $(159)_{10}$ to Excess-3 code
iii) $(1010110101011)_{2}$ to Gray code

PART B

Answer any two full questions, each carries 15 marks.
4 a) Compare PROM, PLA and PAL.
b) Draw the circuit and explain the operation of two input TTL NAND gate using totem pole.
c) Implement 3 bit binary to Excess- 3 converter using PLA.

5 a) Convert a T flip flop to J K Flip flop
b) Design a synchronous self starting counter to count the sequence $0,1,3,4,5,7,0,1 \ldots$
\ldots using T flip flops. When the counter enters an unused state, the counter has to start counting from 0 .

6 a) Implement the following Boolean functions using PLA.
$\mathrm{f} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,1,3,5) \quad \mathrm{f} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum \mathrm{m}(0,2,5,7,9,10,12,14,15)$
b) Design a mod-12 synchronous counter using T flip-flop.

PART C

Answer any two full questions, each carries 20 marks.

7 a) Draw the logic diagram of a four bit, bi-directional serial in serial out (SISO)
shift register with LOAD/SHIFT control and explain the working with timing diagram.
b) Differentiate Moore and Mealy models with example state diagram.
c) Draw the logic diagram of a 3 bit Johnson counter and explain the working with truth table.

8 a) Reduce the given state table using partition method and obtain the equivalent states.

Present state	Next State			Output
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
A	C	B	1	0
B	D	C	0	0
C	G	D	0	0
D	E	F	1	0
E	A	F	1	0
F	G	F	1	0
G	A	D	0	0

b) Design a circuit to implement the given state diagram.

9 a) Draw the state diagram and design a 3 bit up/down binary counter comprises a clocked sequential circuit having a level control input x and a clock input. It is required that when $\mathrm{x}=0$ the counter counts up and when $\mathrm{x}=1$ the counter counts down.
b) Reduce the given state table using implication chart and obtain the equivalent states

Present state	Next State		Output	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
A	A	B	0	0
B	D	C	0	1
C	F	E	0	0
D	D	F	0	0
E	B	G	0	0
F	G	C	0	1
G	A	F	0	0

